An Acquisition Method of Membership Functions and Fuzzy Reasoning Rules by Fuzzy Neural Network
نویسندگان
چکیده
منابع مشابه
A Fuzzy Neural Network Learning Fuzzy Control Rules and Membership Functions by Fuzzy Error Backpropagation
| In this paper we present a new kind of neural network architecture designed for control tasks, which we call fuzzy neural network. The structure of the network can be interpreted in terms of a fuzzy controller. It has a three-layered architecture and uses fuzzy sets as its weights. The fuzzy error backpropagation algorithm, a special learning algorithm inspired by the standard BP-procedure fo...
متن کاملInduction of fuzzy rules and membership functions from training examples
Most fuzzy controllers and fuzzy expert systems must predefine membership functions and fuzzy inference rules to map numeric data into linguistic variable terms and to make fuzzy reasoning work. In this paper, we propose a general learning method as a framework for automatically deriving membership functions and fuzzy if-then rules from a set of given training examples to rapidly build a protot...
متن کاملUniversal Triple I Method for Fuzzy Reasoning and Fuzzy Controller
As a generalization of the triple I method, the universal triple Imethod is investigated from the viewpoints of both fuzzy reasoningand fuzzy controller. The universal triple I principle is putforward, which improves the previous triple I principle. Then,unified form of universal triple I method is established based onthe (0,1)-implication or R-implication. Moreover, the reversibilityproperty o...
متن کاملA new method for constructing membership functions and fuzzy rules from training examples
To extract knowledge from a set of numerical data and build up a rule-based system is an important research topic in knowledge acquisition and expert systems. In recent years, many fuzzy systems that automatically generate fuzzy rules from numerical data have been proposed. In this paper, we propose a new fuzzy learning algorithm based on the alpha-cuts of equivalence relations and the alpha-cu...
متن کاملFine Tuning of Membership Functions for Fuzzy Neural Systems
This paper presents a new method for fine-tuning the Gaussian membership functions of a fuzzy neural network (FNN) to improve approximation accuracy. This method results in special shape membership functions without the convex property. We first recall that any continuous function can be represented by a linear combination of Gaussian functions with any standard deviation. Therefore, the Gaussi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Electronics, Information and Systems
سال: 1994
ISSN: 0385-4221,1348-8155
DOI: 10.1541/ieejeiss1987.114.11_1185